Recruitment and positioning determine the specific role of the XPF‐ERCC1 endonuclease in interstrand crosslink repair

نویسندگان

  • Daisy Klein Douwel
  • Wouter S Hoogenboom
  • Rick Acm Boonen
  • Puck Knipscheer
چکیده

XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?

The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss rece...

متن کامل

RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model repl...

متن کامل

DNA repair endonuclease ERCC1–XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy

The ERCC1-XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In...

متن کامل

Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs.

In this review, we focus on the discrepant roles of the DNA repair complex ERCC1/XPF in the prevention of cancer and in the resistance of cancer to chemotherapy. ERCC1/XPF is essential for nucleotide excision repair (NER) incising DNA 5' to the lesion. NER deficiency results in the skin cancer-prone inherited disease xeroderma pigmentosum (XP). The ERCC1/XPF complex is also involved in recombin...

متن کامل

Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice.

The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017